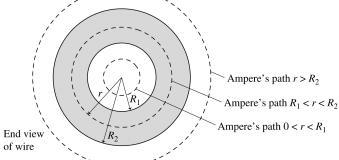
32.61. Model: The magnetic field is that of the current which is distributed uniformly in the hollow wire. **Visualize:**



Ampere's integration paths are shown in the figure for the regions $0 \text{ m} < r < R_1$, $R_1 < r < R_2$, and $R_2 < r$. **Solve:** For the region $0 \text{ m} < r < R_1$, $\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{through}}$. Because the current inside the integration path is zero, B = 0 T. To find I_{through} in the region $R_1 < r < R_2$, we multiply the current density by the area inside the integration path that carries the current. Thus,

$$I_{\rm through} = \frac{I}{\pi (R_2^2 - R_1^2)} \pi (r^2 - R_1^2)$$

where the current density is the first term. Because the magnetic field has the same magnitude at every point on the circular path of integration, Ampere's law simplifies to

$$\oint \vec{B} \cdot d\vec{s} = B \int ds = B(2\pi r) = \mu_0 \frac{I(r^2 - R_1^2)}{(R_2^2 - R_1^2)} \Longrightarrow B = \frac{\mu_0 I}{2\pi r} \left(\frac{r^2 - R_1^2}{R_2^2 - R_1^2}\right)$$

For the region $R_2 < r$, I_{through} is simply I because the loop encompasses the entire current. Thus,

$$\oint \vec{B} \cdot d\vec{s} = B \int ds = B 2\pi r = \mu_0 I \implies B = \frac{\mu_0 I}{2\pi r}$$

Assess: The results obtained for the regions $r > R_2$ and $R_1 < r < R_2$ yield the same result at $r = R_2$. Also note that a hollow wire and a regular wire have the same magnetic field outside the wire.